Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.
نویسندگان
چکیده
Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.
منابع مشابه
Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells
Biomaterial surface functionalization remains of great interest in the promotion of cell osteogenic induction. Previous studies highlighted the positive effects of porous Ti-6Al-4V and phospholipid coating on osteoblast differentiation and bone remodeling. Therefore, the first objective of this study was to evaluate the potential synergistic effects of material porosity and phospholipid coating...
متن کاملMechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining (TECHNICAL NOTE)
Present work aims at multi-mechanical surface treatment of Ti-6Al-4V based-miniplate implant manufactured by electrical discharge machining (EDM) for biomedical use. Mechanical surface treatment consists of consequent use of ultrasonic cleaning, rotary tumbler polishing, and brushing. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Al...
متن کاملTi-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.
Triply periodic minimal surface (TPMS) structures have already been shown to be a versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95% and pore sizes in the range of 560-1600 μm and 480-1450 μm respectively were manufactured by selective laser melting (SLM) for bone implants. The man...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملMesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biofabrication
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2014